

Bond & Pollard Ltd

Oracle Demo
Application
Installation Guide

Ian Bond
8-1-2022

Page 1 of 60

Table of Contents
Introduction .. 3

Oracle Database Express (XE) ... 4

Installing Oracle XE ... 4

Managing Oracle ... 5

Starting the Oracle Services .. 5

Starting and Stopping the Database ... 7

Net Services Listener ... 8

Developer Tools .. 10

SQL*Plus .. 10

SQL Developer ... 13

The Demo Application... 14

Database Security ... 14

Demo Schema ... 15

Users / Schemas .. 15

Applications ... 15

Packages .. 15

Tables .. 16

Source Code Templates .. 17

Directories ... 17

Installing the Demo Application .. 18

Getting Started .. 28

CSV File Import Demo ... 30

Application Development ... 37

Systems Development Life Cycle .. 38

Planning... 38

Analysis ... 38

Design .. 39

Development ... 39

Testing ... 39

Implementation .. 40

Maintenance ... 40

Documentation ... 41

Release Management ... 42

Deployment Environments ... 42

Source Control Management .. 42

Page 2 of 60

Modular Database Applications .. 43

Client Server Architecture ... 43

Database Design.. 44

Normalization .. 44

Surrogate vs Natural Keys ... 50

Constraints .. 52

Coding Standards .. 53

Golden Rules for Software Development ... 53

Naming Conventions ... 54

Coding Style... 56

PL/SQL Programming Tips ... 57

Packages .. 58

Functions ... 58

Data Typing ... 59

Performance ... 59

Page 3 of 60

Introduction

The Demo Application has been developed as a working model of how to create a simple Oracle

Database Application.

The application comprises:

• A single schema based on Oracle Education’s training database, known as the Scott schema.

• Automated installation scripts that create the schema, load seed data and compile the

packages.

• Additional tables and related objects to extend the functionality of the basic schema.

• A directory structure containing the sample application program source code, templates,

installation and admin scripts, SQL reports and documentation.

• A simple application to import data into, and export data from the database using CSV files.

• PL/SQL Packages demonstrating useful functions.

• Source code templates.

The following documentation is included:

• A guide to creating an application development environment.

• A simple set of coding standards.

• A template technical specification document.

• Functional specifications.

• Technical specifications.

• A user guide for the data import application.

Page 4 of 60

Oracle Database Express (XE)

Installing Oracle XE

The first task is to install Oracle Database Express, and SQL Developer, both of which can be

downloaded from Oracle’s website.

Please refer to the Database Express Installation Guide.

1. Login to your Oracle account on the Web.

2. Download Oracle XE for Windows.

3. Unzip the installation file.

4. Run setup.exe

5. Make a note of the connection strings.

Tip: Store passwords securely in an encrypted database, such as KeePass.

file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/documentation/database-express-edition-installation-guide-microsoft-windows.pdf

Page 5 of 60

Managing Oracle

Starting the Oracle Services

The Oracle Database Services must be started prior to accessing the database, and should start

automatically when you start your computer.

The first pluggable database XEPDB1 opens automatically when the Oracle Database Service is

started. Other pluggable databases remain closed by default, and must be opened manually or set to

open automatically.

To manage the Oracle Services, run the Windows Services app.

Search for the Oracle services, which should like the example below:

To start the Oracle Service, right-click on OracleServiceXE, and select Start.

To set the start-up properties of a service, right-click, select properties and select Automatic, Manual

or Disabled from the Startup type list.

Page 6 of 60

Page 7 of 60

Starting and Stopping the Database

Starting the Database via SQL*Plus

Run SQL*Plus from the command prompt, connect as SYSDBA:

C:\> SQLPLUS / AS SYSDBA

To start the database:

SQL> STARTUP

The first pluggable database should open automatically. To open all pluggable databases:

SQL>ALTER PLUGGABLE DATABASE ALL OPEN

Shutdown the Database via SQL*Plus

You should always shutdown the Oracle database before shutting down your computer, to prevent

data corruption due to the file system suddenly being taken away from the running database.

To shut down the database:

SQL>SHUTDOWN IMMEDIATE

Page 8 of 60

Net Services Listener

The listener processes on a server detect incoming requests from clients for connection, by default

on port 1521, and manage network-traffic once clients have connected to an Oracle database. The

listener uses a configuration-file named listener.ora to help keep track of names, protocols, services

and hosts.

You can start the listener using the Microsoft services app, or from the command prompt:

Page 9 of 60

To check the listener status from the command prompt:

C:\> LSNRCTL STATUS

Page 10 of 60

Developer Tools

SQL*Plus

The SQL*Plus tool runs from the Windows command prompt, with the following format:

Note that square brackets [] indicate optional parameters, angle brackets < > are required.

C:\> SQLPLUS <USERNAME>/<PASSWORD>@//<HOSTNAME>[:PORT]/<DBNAME> [AS SYSDBA]

<username> Database username, e.g. SYS

<password> Password you specified during installation

<hostname> Name of the database server, or its IP address. To reference the current
computer, you can use localhost.

[:port] Must be specified if the listener is not configured to use the default port 1521

<dbname> XE for the container
XEPDB1 for the first pluggable database

[AS SYSDBA] This is required for the SYS user, otherwise you get the error “SP2-0157:
unable to CONNECT to ORACLE after 3 attempts, exiting SQL*Plus”

If you are a database administrator running SQL*Plus on the database server, you can connect to the

container database directly by running the following command.

C:\> SQLPLUS / AS SYSBDA

Connect to container database XE

C:\> SQLPLUS SYS/<PASSWORD>@//LOCALHOST:1521/XE AS SYSDBA

C:\> SQLPLUS SYS/<PASSWORD>@//LOCALHOST/XE AS SYSDBA

C:\> SQLPLUS SYS/<PASSWORD>@//192.168.1.225:1521/XE AS SYSDBA

Connect to first pluggable database XEPDB1

C:\> SQLPLUS SYS/<PASSWORD>@//LOCALHOST:1521/XEPDB1 AS SYSDBA

C:\> SQLPLUS SYS/<PASSWORD>@//LOCALHOST/XEPDB1 AS SYSDBA

C:\> SQLPLUS SYS/<PASSWORD>@//192.168.1.225:1521/XEPDB1 AS SYSDBA

Page 11 of 60

Check which database you are connected to:

SQL> SHOW CON_NAME

To switch to the first pluggable database:

SQL> ALTER SESSION SET CONTAINER=XEPDB1;

To switch to the container database:

SQL> ALTER SESSION SET CONTAINER=CDB$ROOT;

Page 12 of 60

Page 13 of 60

SQL Developer

Download the SQL Developer tool from the Oracle website.

Create a connection for the SYS user, with role SYSDBA.

Tip: Restrict access to the SYS user, and store the password securely in an encrypted database.

Page 14 of 60

The Demo Application

Database Security

The worst, and most commonly occurring security mistake is to have all your database objects in one

schema, and then give all your users and applications the schema’s password. This is an extremely

dangerous thing to do. Anybody could connect to your schema and start dropping tables, or

changing the table structures.

Instead:

• Create a schema that owns all the database objects, the Owning Schema, that no users or

applications ever connect to.

• Prevent users from connecting to the Owning Schema. Lock the account, and turn off

authentication so no clues are given that the account exists. If someone tries to logon, they

will get an invalid username/password error instead of a message saying the account is

locked, which would give away its existence, and importance.

• Create a secondary schema for the users to connect to the database with, that has limited

privileges, and the necessary grants to access objects in the Owning Schema.

This simple approach will prevent users from truncating and dropping tables. If you are giving

privileges such as delete and update, there is a risk that people could alter the data, but at least you

have prevented structural changes to the database.

Page 15 of 60

Demo Schema

The demo application database schema is based on Oracle Education’s Scott schema, with some

additional features and sample PL/SQL applications.

Users / Schemas

User Name Description

appsdemo This is the owning schema, which contains all the demo database
objects. No users or applications must ever connect to the database as
this user, as it would be a major security risk.

demo_connect This user has the minimal privileges, and grants to the appsdemo
schema, necessary to run the demo applications.

Applications

Application Description

CSV Data Import Import data from CSV files into the database. A simple demo has been
provided, along with a sales order import that has more complex
validation.

CSV Data Export Export data to CSV file. A simple demo, and a sales order export have
been provided.

Packages

The following packages have been provided.

Package Name Description

EXPORT Export data (orders) to CSV files.

IMPORT Import data from CSV files with validation and error handling. Includes
order import and a simple demo.

ORDERRP Rules package for Order related functions, for example currentprice
returns the price that is currently in effect for a product. This saves
repeating code and makes maintenance easier.

PLSQL_CONSTANTS Define non-table related data types and constants such as directory
names, delimiter characters.

UTIL_ADMIN Admin functions such as standardised error handling.

Page 16 of 60

Package Name Description

UTIL_DATE Date manipulation functions. Date of Easter and related holidays. Is date
a working day? Last working day of month.

UTIL_FILE Load data from an external CSV file into a staging table.

UTIL_NUMERIC Number manipulation functions. Base conversion, factorial, sort
numbers, convert integer to an alphabetic code.

UTIL_STRING String handling functions. Extract fields from a delimited string (used by
CSV import function), sort strings, convert escaped characters to
formatting characters (\n becomes New Line ASCII character 10).

Tables

Oracle Demo

Table Name Description

BONUS Employee salary, commission

CUSTOMER Customer table

DEPT Departments

DUMMY Demo table of numbers used for SQL exercises

EMP Employees

ITEM Item (order lines) table

ORD Order table (order lines in associated ITEM table)

PRICE Product prices. Minimum, Current price effective start and end date.

PRODUCT Product table, foreign key reference by ITEM

SALGRADE Employee job grade salary ranges

Demo Application

Table Name Description

APPLOG Application message log: messages with a severity, timestamp, user and
program name.

APPSEVERITY Application message severity: Info, Warning, Error

COUNTRY Maintain a list of valid country codes.

COUNTRY_HOLIDAY Maintain holiday dates by country and year. Used by the date functions to
calculate working days: last working day of month, number of working
days between two dates etc.

DEMO Simple table with a date and text column, used to demonstrate data
import/export functions.

IMPORTCSV Staging table for CSV data to be imported into the database. Function
util_file.load_csv loads CSV data into this table. Data fields are in a
delimited string “field1”,field2,field3,”field4” etc.

IMPORTERROR When importing CSV data, it will be validated and all errors logged here.
Separate from the application log to make it easier to report and manage.

Page 17 of 60

Source Code Templates

Source Type Template

DOS Batch file ..\templates\dos script.bat

PL/SQL Package Body ..\templates\pkg_template_body.pkb

PL/SQL Package Specification ..\templates\pkg_template_spec.pks

SQL script ..\templates\sql_template.sql

Directories

Directory Name Contents

admin Database admin scripts. Start database. Create users. Check for invalid
objects.

bin Binaries. Executable images (compiled programs)

com DOS batch scripts.

config Configuration files. You must edit these to specify the database service
name, application owner (schema), and directory paths.

data Data (import and export files)

documentation Systems documentation, specifications, user guides

install Scripts to automatically install the database schema, load seed data and
compile packages

log Program logs

out User report output

plsql Package source code

sql SQL scripts: reports, scripts to execute package code

src Program source code, e.g., C source files

templates Code templates

test Scripts and SQL to test programs, automated test scripts

file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/templates/dos%20script.bat
file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/templates/pkg_template_body.pkb
file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/templates/pkg_template_spec.pks
file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/templates/sql_template.sql

Page 18 of 60

Installing the Demo Application

Download the archive file containing the demo application from the Bond & Pollard website:

http://www.bondpollard.co.uk/documents/appsdemo.zip

Extract the files in the archive to the directory where you want to install the application. In the

following example, the target directory is:

C:\Users\ianbo\DropBox\oracle\

Open Windows Explorer, find the archive file, right click on it and select Extract All.

The following directories will be created:

• xepdb1

o appsdemo

http://www.bondpollard.co.uk/documents/appsdemo.zip

Page 19 of 60

Note the following:

Item Description Example

DB
Service
Name

Name of the Oracle database. XEPDB1 is the first
pluggable database. In a production environment
you will have separate databases for
development, testing and production. For
example: DEV, TEST, PROD.

XEPDB1

App
Owner

Owning Schema. This is the user/schema who
owns the demo application database objects.

APPSDEMO

Connect
User

Database connection user with limited privileges
and grants to objects in the owning schema.

DEMO_CONNECT

DB
Service
Home

The target directory name must match the name
of the database service (XEPDB1).

C:\users\ianbo\dropbox
\oracle\xepdb1

App
Home

Directory containing the appsdemo installation
scripts, programs, source code etc. The directory
name

C:\users\ianbo\dropbox
\oracle\xepdb1\appsdemo

Data
Home

Directory containing data files used for importing
data to, and exporting data from the database.
You may decide to put the user data in a different
location to the application files.

D:\user_data\xepdb1
\appsdemo\data

Create a desktop shortcut to the startora.bat batch script, which is in the com directory. You can

double-click on the shortcut to run SQL*Plus from the command line.

Rename the shortcut to APPSDEMO Oracle.

Page 20 of 60

You must now edit the following files in the config directory, to configure the application

environment:

• set_env.bat

• set_env.sql

Find the batch file set_env.bat in the config directory, and edit it to match your application

configuration. You will need to set the following variables:

Variable Name Description Example value

DBSERVICE Oracle service name, XEPDB1 is the first
pluggable database. In a production
environment, this would reference
separate database instances: DEV, TEST,
or PROD.

XEPDB1

APP_OWNER Owning Schema. This is the user/schema
who owns the demo application database
objects.

APPSDEMO

CONNECT_USER Database connection user with limited
privileges and grants to objects in the
owning schema.

DEMO_CONNECT

CONNECT_PWD Password for the DEMO_CONNECT user.

Users are prompted to enter a
password when running the script

PORT Oracle database listener port. If you have
not changed this, keep it as the default
1521.

1521

DBCONNECT Connection string, including the database
server hostname, port and service name.
Port 1521 is the default. If you are using a
different port, you must specify that port
number in connection string.

//localhost:%PORT%/%dbservice%

APP_HOME Directory where the application was
installed. You will need to change this to
match the installation directory path.

C:\users\ianbo\dropbox\
oracle\%DBSERVICE%
\%APP_OWNER%

DATA_HOME Directory containing user data
(import/export). Do not include spaces or
special characters in the name.

D:\user_data\%DBSERVICE%
\%APP_OWNER%\data

Page 21 of 60

Find the file set_env.sql in the config directory, and edit it to configure the following variables:

Variable Description Example. Value

V_DBSERVICE The database service name, XEPDB1 for
the first pluggable database. In a
production environment this would be
one of DEV, TEST, PROD or similar.

XEPDB1

V_APP_OWNER Database user who owns the application
objects (schema). Must be the same
value as APP_OWNER specified in
SETENV.bat

appsdemo

V_CONNECT_USER Database connection user with limited
privileges and grants to objects in the
owning schema.

demo_connect

V_PORT Oracle database listener port, default
1521.

1521

V_DBCONNECT Connection string, including the
database server hostname, port and
service name

//localhost:&V_PORT
/&V_DBSERVICE

V_APP_HOME Directory where the application was
installed. The double \\ directory
delimiter is required if you have SET
ESCAPE ON to handle special characters
in directory paths.

C:\\USERS\\IANBO\\DROPBOX
\\ORACLE\\&V_DBSERVICE
\\&V_SCHEMA

V_DATA_HOME User data directory (import/export
files). Do not include spaces or special
characters in the name.

D:\\USER_DATA\\&V_DBSERVICE
\\&V_SCHEMA\\DATA

file://///ORACLE/&V_DBSERVICE

Page 22 of 60

Find the file auto_install.sql in the install directory, and edit v_app_root to match the path to the

appsdemo directory, as in the following example:

Double click on the startora.bat desktop shortcut, to start the database.

Start Oracle SQL Developer.

Connect to the database as SYS.

Run the installation script install\auto_install.sql

Page 23 of 60

You will be prompted to enter the password for the Owning Schema, appsdemo.

Tip: Use an encrypted password safe to store your passwords, never write them down in plain

text. Never share the password for the Owning Schema with your users.

Page 24 of 60

Next, you will be prompted to enter a password for the connection user, demo_connect. Enter a

password, and keep it stored securely in an encrypted password database.

Press OK at the following prompt.

Page 25 of 60

Next, enter the SYS password, and press OK.

Check that the script completed without errors.

• Create database connection user demo_connect

• Create Owner Schema appsdemo

• Create database directories

• Create sequences

• Create tables and indexes

• Create public synonyms for tables

• Grant table access privileges to demo_connect user

• Load data into tables

• Compile packages

• Create public synonyms for packages

• Grant execute privileges to demo_connect user

• Lock the Owner Schema, and set no authentication to keep it secure

Page 26 of 60

Create a connection for the demo_connect user in SQL Developer:

Page 27 of 60

Create the data directories specified in DATA_HOME:

Page 28 of 60

Getting Started

Click on the desktop icon to start Oracle and get to the command prompt.

The command prompt is set as XEPDB1\APPSDEMO>.

Page 29 of 60

To run SQL*Plus enter the command:

XEPDB1\APPSDEMO> sqlplus demo_connect/[password]@//localhost/xepdb1

Page 30 of 60

CSV File Import Demo

In this demonstration we will:

1. Attempt to import order data from a CSV file which contains several errors.

2. Run a report to find out what the errors were.

3. Fix the errors in the CSV file.

4. Run the import process again with the corrected CSV file.

5. Run an order report to view the newly imported orders.

For this demonstration we will use the test order file order_data 017 ERRORS.csv which is the in the

data\pending directory. Note that this file contains a number of errors, so the import will fail.

Copy the CSV file from the data directory Pending to Received.

Page 31 of 60

Click on the APPSDEMO desktop shortcut.

Run the import_order batch program. Enter the following commands at the prompt:

XEPDB1\APPSDEMO>cd com

XEPDB1\APPSDEMO>import_order

You will be prompted to enter the password for demo_connect. Enter the password that you

specified during installation.

Page 32 of 60

The program reported that there were errors importing the file order_data 017 ERRORS.csv.

To investigate further, open SQL Developer, connect to demo_connect, then open and run the SQL

script applog.

Note the error messages reported for the order file we tried to import.

Page 33 of 60

To view the detailed error messages, run the report import_errors.sql.

Note that Key Value refers to the Order Reference field in the CSV file. The CSV data is shown against

each error message so you can identify the row in the CSV file that needs to be fixed.

The following errors have been reported:

• TEST0040: Customer ID 103Z is invalid – the Z on the end should not be there, so the

customer cannot be found.

• TEST0040: Ship Date 02/08/2022 is earlier than the order date. To correct this error, we

need to change it to a date on or after the order date 27/08/2022.

• TEST0040: Product 100890Z invalid – the Z on the end should not be there, so the product

cannot be found.

• TEST0042: Ship Date 02/09/2022 is earlier than the order date. To correct this error, we

need to change it to a date on or after the order date 03/09/2022.

• TEST0042: Qty 51A invalid number. Just remove the A from the end.

Page 34 of 60

To fix the errors:

1. Find the CSV file in the error directory DATA_IN\error.

2. Edit the file and correct the above errors.

3. Move the file to the Received directory. For this demonstration, we will also rename the file

to order_data 017 FIXED.csv

4. Run the import_order program again, and check for errors.

Editing the file to correct the reported errors:

Page 35 of 60

Run the import_order process again.

Enter the password for demo_connect when prompted.

Note that this time we see the message “Success!”.

Run the import_errors.sql report again. This time, there should be no errors reported for the orders

in the CSV file.

Page 36 of 60

Finally, run the orders report, orders_param.sql. Specify the range of orders to report as TEST0040

to TEST0042:

The orders in the CSV file have now been successfully loaded into the database.

Page 37 of 60

Application Development

You should consider the following before starting to develop your applications:

Systems Design

• Choose a systems development methodology, for example the Oracle Unified Method.

Data Security

• Lock the owning schema, and provide connection only users with limited privileges.

• Passwords to be encrypted, never hardcoded in scripts.

• General Data Protection Regulation GDPR

• Segregation of duties

• Backup & Disaster Recovery

Change Management

• Managing changes:

o Support Ticket / Change Request / Asset management (Samanage, SolarWinds

Service Desk).

• Documenting changes to your database and application.

Software Development

• Create separate database environments for development, testing and production.

• Source Control Management: Subversion, Git.

• Determine how you will document your applications. At the very least you should document

all of your package public functions and procedures. Include comments in the package

specification that describe how to use each procedure and function.

• Database design

o Normalization.

o Surrogate or Natural keys.

o Constraints to enforce business rules and data integrity.

• Coding standards, based on software engineering best practice.

o Naming conventions for your database objects and applications.

• Building packages/libraries of commonly used functions and procedures:

o Business functions

o Rules Packages

o Constants

o Error handling

file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/templates/pkg_template_spec.pks

Page 38 of 60

Systems Development Life Cycle

The Systems Development Life Cycle (SDLC) is the process by which information systems are created

or modified.

The SDLC has the following stages:

1. Planning
2. Analysis
3. Design
4. Development
5. Testing
6. Implementation
7. Maintenance

It is best to take an iterative approach to the SDLC. Do some analysis, then some design and

implementation, and feed-back what you learn into the analysis stage, and so on.

Planning

Study the feasibility of creating or changing a system to meet the needs of the business. Consider

the benefits of the new system versus the resources, time and cost involved.

Whilst the proposals may be technically possible, you must consider the business case, and identify

potential problems. For example, it may be feasible to configure a warehouse management system

to provide lot control, bringing benefits to the customer, however increased administration costs

may not have been considered in the contract, leading to financial losses.

Analysis

Gather the requirements of the business, and users of the system. Consider the functionality of the

new system. Analyse the requirements to select a solution that best fits the business needs.

• Research and describe the operation of the current business system

• Understand the problems of the current system, and the reasons why a new system is

required

• Define and document the requirements of the new system.

Page 39 of 60

Design

Create a detailed functional specification for the system. Work with the users to define their

requirements, and identify all the information that needs to be processed. Consider the hardware,

networking and software requirements.

• Decide on a design strategy

• Pick an appropriate solution

• Produce a detailed specification

o Data Model / Entity Relationships Diagrams

o Process Model / Data Flow Diagrams

• Consider a strategy for support of the system once it has been implemented

Development

Design and build the database using the data model. Write technical specifications for the

processes. Develop the software application programs.

• Database creation and population

• Technical Specifications

• Program Design

• Programming

Testing

Test the system to ensure it meets the defined requirements, is free from errors, robust and

performs to the required standard.

The testing will be carried out by quality assurance professionals, and the end users. When the end

users are satisfied with the system it can be signed off as ready to move into production, or go live.

Page 40 of 60

Implementation

The new database and software applications are moved into a live “production” environment. A plan

must be in place to revert to the old system if problems are encountered during implementation.

• Preparation of user documentation

• User training

• Implement system support strategy

Maintenance

The system will require support and upgrades during its lifetime. Faults may need to be fixed, or new

requirements will be identified, necessitating changes to the system.

Page 41 of 60

Documentation

You will need to create, update and manage the documentation for your applications.

Oracle use the following document templates for application extensions:

• MD050 Application Extension Functional Design

• MD070 Application Extension Technical Design

You will also need the following documents:

• Planning / Feasibility Study

• Requirements Analysis

• Data Model: Entity Relationship Diagrams

• Process Model: Data Flow Diagrams

• Coding Standards

• PL/SQL Libraries

• Application Programming Interfaces

• User Guide

• Test Plans

• Release Control (with instructions for how to deploy the applications into production)

file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/documentation/MD050_Application_Extensions_Functional_Design.docx
file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/documentation/MD070_Application_Extensions_Technical_Design.docx

Page 42 of 60

Release Management

Software applications are developed, tested and deployed into product via a structured release

management process. This process allows for changes to be rolled back if there are any problems, to

maintain the integrity of the live system.

Deployment Environments

The following environments are used:

• DEV is the development environment where all new software is created and where changes

are made to existing applications

• TEST is the environment where all the testing, including user acceptance tests, takes place.

• PROD is the live Production environment

Additional environments such as SANDBOX may be created for testing patches, upgrades and other

major changes to the system.

Source Control Management

Source Control Management tools allow you track and manage changes to software.

The source code is stored in a repository, which retains a history of each version as changes are

made. Developers check out code to work on, and check the new version of the source code back

into the repository when it is ready to be deployed into the production system.

Page 43 of 60

Modular Database Applications

The following abstract is taken from Bryn Llewellyn’s White Paper: White

Papers\why_use_plsql_whitepaper_10.pdf

Large software systems must be built from modules. A module hides its implementation behind an

interface that exposes its functionality. This is computer science’s most famous principle.

For applications that use an Oracle Database, the database is, of course, one of the modules. The

implementation details are the tables and the SQL statements that manipulate them. These are

hidden behind a PL/SQL interface. This is the Thick Database paradigm: select, insert, update, delete,

merge, commit, and rollback are issued only from database PL/SQL. Developers and end-users of

applications built this way are happy with their correctness, maintainability, security, and

performance. But when developers follow the noPLSQL paradigm, their applications have problems

in each of these areas and end-users suffer.

Do not build your business rules into individual programs or database triggers, as this will lead to

duplication, inconsistency, and make maintenance extremely difficult and time consuming. Instead,

build your business processes into database packages. The packaged functions and procedures will

perform all the necessary SQL actions described above. Call the packaged functions from database

triggers and application programs as required.

For example, let us say you have a function that checks a customer’s credit status, and returns their

account balance. You may want to perform this check in several places: before accepting a new

order, when printing a customer account report, and so on. Rather than having the function coded

separately in different programs, it is far better to do it once in a single packaged function that can

be called whenever necessary.

Client Server Architecture

Hide the implementation from the client applications

Build your business logic into packages of procedures and functions that reside in the database. Your

client programs will call these stored procedures whenever they need to retrieve, insert or modify

data – the client programs themselves should not communication directly with the database.

file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/documentation/White%20Papers/why_use_plsql_whitepaper_10.pdf
file:///C:/Users/ianbo/Dropbox/oracle/xepdb1/appsdemo/documentation/White%20Papers/why_use_plsql_whitepaper_10.pdf

Page 44 of 60

Database Design

Normalization

Normalization is the process of organizing a database to remove redundant, duplicated data, and to

group related items together to allow efficient storage, retrieval and modification of data.

Edgar F Codd invented the Relational Model for databases in the early 1970s, and together with

Raymond F Boyce defined Boyce-Codd Normal Form BCNF.

The following example describes the process of converting non-relational order data stored in a

spreadsheet into a set of normalized relational database tables.

The following table represents how non-normalized order data is stored in a spreadsheet.

Order
ID

Order
Date

Cust
ID

Name Item
ID

Product
ID

Description Price Qty Total

601 01-MAY-86 106 Shape Up 1 200376 SB ENERGY BAR-6 PACK 2.40 1 2.40

604 15-JUN-86 106 Shape Up 1 100890 ACE TENNIS NET 58.00 3 174.00

 2 100861 ACE TENNIS RACKET II 42.00 2 84.00

3 100860 ACE TENNIS RACKET I 44.00 10 440.00

610 07-JAN-87 101 TKB Sport Shop 1 100860 ACE TENNIS RACKET I 35.00 1 35.00

 2 100870 ACE TENNIS BALLS 3-
PACK

2.80 3 8.40

3 100890 ACE TENNIS NET 58.00 1 58.00

Note:

• An order can have one or more associated products.

• The columns containing product information are repeated.

• The product columns have been wrapped to fit on the page, but imagine them being all on a

single row for each order.

Page 45 of 60

First Normal Form

A relation is in first normal form if it conforms to the following rule:

• Each row, or record, in your database table must be uniquely identified by a Primary Key,

with no repeating groups of fields.

In our example, the Product ID, Description, Price, Qty and Total columns are repeated several times

for each order.

There are several problems with this organization of the data:

• A customer may order 1, 2, 10 or more products. Your database table would need multiple

sets of columns to store the product information for each order.

• You will be restricted as to how many products a customer can order at one time depending

on how many columns you created in your table.

• You could potentially waste a lot of space in your database if you provide columns for 10

products per order, but customers typically order one or two items each time.

To make the database comply with First Normal Form we must split the repeating product

information into separate rows, each uniquely identified by a key comprising one or more columns.

ORDID
(Primary
Key part
1)

ORDERDATE CUSTID NAME ITEMID
(Primary
Key part
2)

PRODID DESCRIPTION ACTUALPRICE QTY TOTAL

601 01-MAY-86 106 Shape Up 1 200376 SB ENERGY BAR-6
PACK

2.40 1 2.40

604 15-JUN-86 106 Shape Up 1 100890 ACE TENNIS NET 58.00 3 174.00

604 15-JUN-86 106 Shape Up 2 100861 ACE TENNIS RACKET
II

42.00 2 84.00

604 15-JUN-86 106 Shape Up 3 100860 ACE TENNIS RACKET I 44.00 10 440.00

610 07-JAN-87 101 TKB Sport
Shop

1 100860 ACE TENNIS RACKET I 35.00 1 35.00

610 07-JAN-87 101 TKB Sport
Shop

2 100870 ACE TENNIS BALLS 3-
PACK

2.80 3 8.40

610 07-JAN-87 101 TKB Sport
Shop

3 100890 ACE TENNIS NET 58.00 1 58.00

• The columns have been renamed to follow our database object naming rules.

• Each row can be identified by a unique Primary Key comprising the ORDID plus ITEMID.

Page 46 of 60

Second Normal Form

A relation is in second normal form if it conforms to the following rules:

• It is in first normal form.

• Each column, or field, in the record must depend on the whole Primary Key and not just

part of it.

The columns ORDERDATE, CUSTID and NAME are duplicated in several rows, as they are dependent

on only part of the Primary Key, ORDID. To resolve this problem, we need to create a new table ORD

that will hold a single row for each unique order.

ORD

ORDID
(Primary Key)

ORDERDATE CUSTID NAME

601 01-MAY-86 106 Shape Up

604 15-JUN-86 106 Shape Up

610 07-JAN-87 101 TKB Sport Shop

There are still a number of problems with this new table:

• The customers’ names are repeated on multiple rows.

• If a customer’s name changes, and not all rows are updated, there will be inconsistencies in

the database.

The remaining columns will be placed in a new table called ITEM.

ITEM

ORDID
(Primary
Key Part
1)

ITEMID
(Primary
Key Part
2)

PRODID DESCRIPTION ACTUALPRICE QTY TOTAL

601 1 200376 SB ENERGY BAR-6 PACK 2.40 1 2.40

604 1 100890 ACE TENNIS NET 58.00 3 174.00

604 2 100861 ACE TENNIS RACKET II 42.00 2 84.00

604 3 100860 ACE TENNIS RACKET I 44.00 10 440.00

610 1 100860 ACE TENNIS RACKET I 35.00 1 35.00

610 2 100870 ACE TENNIS BALLS 3-PACK 2.80 3 8.40

610 3 100890 ACE TENNIS NET 58.00 1 58.00

• Each row on item is uniquely identified by a primary key consisting of ORDID plus ITEMID.

• ORDID is a Foreign Key, referencing the ORD table ORDID column.

• The product descriptions are repeated in multiple rows.

Page 47 of 60

Third Normal Form

A relation is in third normal form if it conforms to the following rules:

• The database must conform to the second normal form rules.

• No column must depend on any other column except the Primary Key.

If a column is uniquely identified through one or more other columns in addition to the primary key,

this is known as transitive dependence, and breaks the rules of third normal form.

The name of the customer associated with each order depends directly on the CUSTID, not on the

Primary Key, ORDID. We need to create a new table to hold the customer information, which will

eliminate the duplication of customer names.

CUSTOMER

CUSTID
(Primary Key)

NAME

101 TKB Sport Shop

106 Shape Up

The ORD table now contains the following.

ORD

ORDID
(Primary Key)

ORDERDATE CUSTID

601 01-MAY-86 106

604 15-JUN-86 106

610 07-JAN-87 101

CUSTID on the ORD table is said to be a Foreign Key, linking to CUSTID on the CUSTOMER table.

Page 48 of 60

The product information that is not wholly related to the primary key of Item must be moved to a

new table named PRODUCT, to eliminate duplicates of description.

PRODUCT

PRODID
(Primary Key)

DESCRIPTION

100860 ACE TENNIS RACKET I

100861 ACE TENNIS RACKET II

100870 ACE TENNIS BALLS 3-PACK

100890 ACE TENNIS NET

200376 SB ENERGY BAR-6 PACK

The ITEM table now contains the following columns.

ITEM

ORDID
(Primary Key
Part 1)

ITEMID
(Primary Key
Part 2)

PRODID ACTUALPRICE QTY

604 1 100890 58.00 3

604 2 100861 42.00 2

604 3 100860 44.00 10

610 1 100860 35.00 1

610 2 100870 2.80 3

610 3 100890 58.00 1

The column PRODID on Item is a foreign key, relating to the primary key of the PRODUCT table.

Calculated Values

The Total column in Item table is derived by multiplying QTY by the ACTUALPRICE.

If you included a total column on the order item table, you would need to recalculate and store its

value every time the price or quantity was changed.

This is not a normalization problem, but you can remove the total column to make your table smaller

and reduce the risk of data inconsistencies.

Page 49 of 60

Normalized Database Tables

Data Model Diagram

Note:

• Columns have been added to show how the database can be developed further.

• Primary Keys are labelled ‘P’.

• Foreign Keys are labelled ‘F’.

• Indexes have been added to speed up queries.

Page 50 of 60

Surrogate vs Natural Keys

Each table should have a primary key that uniquely identifies each row. A primary key can consist of

one or more columns, containing either natural or surrogate values.

Note that you should never rely on the table’s ROWID as a key, as its value may change or be

deleted.

Surrogate keys are preferred over natural keys. A surrogate key is a number generated by a

sequence, and as such is guaranteed to be unique and will never change. Surrogate keys are numeric

and can usually be stored more efficiently than natural keys, with string values.

CREATE TABLE mytable (

 mytableID INTEGER GENERATED ALWAYS AS IDENTITY,

 description VARCHAR2(50),

 PRIMARY KEY (mytableID));

A natural key has a real-world value, such as a National Insurance number, or a person’s last name.

You cannot absolutely guarantee that a natural key will be unique, or that it will never change. If you

have a very simple, small table, you may prefer to use a natural key for simplicity if its primary key

values are static and unique. For example, a table of countries may have a primary key

Country_Code with values such as “F” for France, “UK” for the United Kingdom etc.

A few reasons you may prefer to use a surrogate key:

• You notice column you wish to use as a key has ascribed meanings, e.g., “2022-ABC-0001”.

Somebody could decide to change the structure of this value in the future.

• Your key would have multiple segments. Again, it could be decided to add more segments to

the key in future, plus your SQL join statements are more complicated.

• There is a risk of duplicates, for example Last_Name would be a bad choice for a unique

primary key.

Page 51 of 60

The following example illustrates the use of a surrogate key.

ORD

Column Name Data Type Description

ORDID NUMBER Primary key (unique generated sequence number)
NUMBER GENERATED ALWAYS AS IDENTITY

ORDREF VARCHAR2(10) Free form reference e.g. FRED-A001

ORDERDATE DATE

CUSTID NUMBER Foreign key references CUSTOMER.CUSTID

ITEM

Column Name Data Type Description

ORDERITEMID NUMBER Primary key (unique generated sequence number)
NUMBER GENERATED ALWAYS AS IDENTITY

ORDID NUMBER Foreign key references ORD.ORDID

ITEMID NUMBER Sequential line number 1,2,3 etc.

PRODID NUMBER Foreign key references PRODUCT.PRODID

ACTUALPRICE NUMBER

QTY NUMBER

• ORDREF is not suitable for use as a key, as it contains user defined values that could easily be

duplicated, or need to change.

• The primary key on each table consists of a single column containing a sequentially

generated number.

• The Primary Key ORDERITEMID uniquely identifies each row on ITEM, and is a sequentially

generated number with no direct relationship to the ORD table.

• The Foreign Key ORDID links the rows in ITEM with their corresponding ORD row.

• If you need a foreign key to ITEM on another table, you can use the ORDERITEMID column,

instead of having to add two separate columns ORDID and ITEMID.

Page 52 of 60

Constraints

Use Database Constraints to enforce business rules for table columns.

Database constraints are stored in the data dictionary rather than in application code, and provide a

simple to code, centralized method for enforcing business rules.

All applications that access the database must follow the rules defined in the data dictionary. If you

build the rules into each application program you need to do a lot more work, the complexity is

increased and inconsistencies and errors are more likely.

Examples:

Constraint Type Description

PRIMARY KEY A column or group of columns that uniquely identifies a row in the table. No
column in the primary key may be null, unlike a UNIQUE constraint. It may be
preferable to use a surrogate key value instead of natural keys such as a name.
Not mandatory.

FOREIGN KEY Create a relationship between two tables. For example, ORDID on ITEM
references ORDID on ORD. Prevents a row from being created on ITEM without
a corresponding ORD (orphaned row). Improve performance when reading
data. Insert/modify/delete slowed down, but maintains data integrity. You may
omit foreign keys on audit or logging tables where you never want to delete the
data in cascade.

UNIQUE The data stored in the specified column, or group of columns, must be unique
for the rows in the table. Columns may have null values.

NOT NULL The column must contain a non-null value.

CHECK The column must not contain a value that violates the specified condition, for
example SALARY > 0

Page 53 of 60

Coding Standards

Golden Rules for Software Development

1. Modular programming: separate the functionality of your programs into independent

modules, or packages containing functions and procedures.

2. Each module should hide its implementation behind an interface that exposes its

functionality. This is a key principle of software engineering.

3. Code for

a. Correctness

b. Maintainability

c. Security

d. Performance

4. Never repeat code. Write the code for each business function once, and call it from database

triggers and application programs.

5. Do not hardcode literal values.

6. No GOTOs or unconditional branching. Every loop should have one way in, and one way out

Page 54 of 60

Naming Conventions

The following rules apply to database objects (tables, views, procedures) and PL/SQL variables:

• Maximum length 30 characters

• First character must be a letter

• Valid characters: letter, numeral, $, _, #

• PL/SQL is not case sensitive to identifiers

Note that the object names are stored in the database in uppercase, and are not case sensitive

unless you surround them with double quotes.

File Names

PL/SQL Package Specification <packagename>s.pls

PL/SQL Package Body <packagename>b.pls

PL/SQL library <libraryname>.pll .plx .pld

Database Objects

Table Names Singular description for example PRODUCT. For tables that resolve
many-to-many relationships combine the names of each table

Views <tablename>_<criteria>_V

Index Primary <tablename>_IDX

Index Other <tablename>_<column>_IDX

Constraint (Primary Key) <tablename>_PK

Constraint (Foreign Key) <table from>_<table to>_FK

Constraint (Not Null) <tablename>_<column>_NN

Constraint (Check) <tablename>_<column>_CHK

Constraint (Unique) <tablename>_<column>_UN

Sequences <tablename>_<column>_SEQ

Triggers <tablename>_T[n]

Page 55 of 60

PL/SQL Variables and Identifiers

Prefixes

l_ Local variables

g_ Global variables

v_ Variable

c_ Constant

p_ Parameter

t_ User defined type

tb_ PL/SQL table

r_ PL/SQL record

Suffixes

_cur Cursor

_IN Parameter Input

Page 56 of 60

Coding Style

Make sure that your code is easily readable, and that its intended purpose is clear. Creating simple,

elegant code is an art form, but it is well worth doing, as it makes future maintenance so much

easier. Your code should practically document itself, but that is not to say that you should do away

with comments and documentation altogether!

• Include useful comments that clearly explain what the program does, but only where

necessary.

• Do not include comments for lines of code that are self-explanatory.

• Indent your code to make it readable, using spaces. Never use tabs as they may vary in width

in different environments, messing up the formatting.

Page 57 of 60

PL/SQL Programming Tips

1. Do not put your code inside database triggers, instead call packaged functions and

procedures from the triggers.

2. Thick database paradigm: SQL that manipulates data (select, insert, update, delete, merge,

commit, rollback) should only be issued from a PL/SQL packaged function or procedure that

resides in the database. Do not put this SQL code inside your application programs.

3. Create an error/exception handling package, and call this from your programs instead of

hardcoding error messages in multiple places.

4. Avoid explicitly declared datatypes for your variables, instead use %TYPE to reference

database columns.

5. For derived values, declare your own application types (SUBTYPE) in a Rules Package.

6. Define types that are not derived from table columns in a package, for example:

plsql_constants so that they’re all in one place, and easy to change if required.

7. Avoid using commit as it is hardcoding, and compromises flexibility around testing

8. Implicit cursors may be faster than explicit cursors

9. Bulk Collect should be used in preference to cursor for loops

10. Use TOAD (Tool for Oracle Application Developers) PL/SQL Code Expert Review features.

Available in version 8 onward.

11. Follow Oracle’s application development and customization standards

Page 58 of 60

Packages

By creating a specific object for each business process or function, you can maintain the logic in one

place and re-use it many times. This is easier to maintain and saves a great deal of effort.

• Collect related procedures and functions together.

• Restrict public access to application logic.

Functions

Do not hardcode business rules into your code – hide the implementation by creating a function to

perform the necessary process.

Example:

Hardcoded rule to derive an employee’s full name.

SELECT employee.first_name || ‘ ‘ || employee.last_name

INTO l_full_name

…

Instead, create a function to derive the full name.

SELECT employee_rp.fullname(first_name, last_name)

INTO l_full_name

…

Here we call the function employee_rp.fullname, which takes first_name and last_name as

parameters and returns the full name, formatted as required. The function is stored in a package

named employee_rp, which is the rules package for handling employee data.

You would just need to alter the employee_rp.fullname function to implement business changes,

rather than seeking out, and amending each instance of code in many different programs.

Page 59 of 60

Data Typing

Do not hard-code data-types in your programmes that will potentially cause future problems.

For example, a variable to hold a person’s name, set to a fixed length of characters. What if the

associated column in the database is altered in the future and its new length exceeds your variable’s

declared length?

Instead, base your variables on database columns wherever possible so that your programs stay in

line with the underlying database structure.

V_employee_name varchar2(100); -- WRONG

V_employee_name emp.employee_name%TYPE; -- BETTER!

Performance

Bulk Collect versus Cursor For Loops

Do not use a Cursor For Loop for a single row query.

With Oracle 8i and above, replace cursor FOR loops with the much faster BULK COLLECT query.

NB: From Oracle version 9i onward you can bulk collect into row type structures instead of individual

tables for each field, but you cannot currently reference the individual fields within the FORALL

process.

Bulk Collect avoids context switch between SQL engine and PL/SQL engine that embedded SQL

statements cause – this is slow.

Take great care with this – Bulk Collect sacrifices memory for speed. All your collected data is stored

in memory, and you then use FORALL to process the data. If you have tables with millions of rows

Bulk Collect could cause severe memory problems.

To avoid this problem, code the Bulk Collect to work in manageable batches of rows, for example

groups of 200.

Page 60 of 60

Cursors

Implicit cursors are often faster than explicit cursors.

SELECT employee.last_name

INTO l_last_name

FROM employees

WHERE employee_id = emp_id_in;

Instead of:

DECLARE

CURSOR c_emp IS

SELECT last_name

FROM employees

WHERE employee_id = emp_id_in;

Rec_emp c_emp%ROWTYPE;

BEGIN

 OPEN c_emp;

 FETCH c_emp INTO rec_emp;

 IF c_emp%FOUND THEN

 ...

END

